

C 上の点 $(t,a(1-t^2))$ (|t|<1) における接線 t の方程式は $y=-2atx+a(t^2+1)$ である。 これと半円 D との交点の x 座標を α , β $(\alpha<\beta)$ とすると, $L^2=(1+4a^2t^2)(\alpha-\beta)^2$ と表せられる。 α , β は方程式 $-2atx+a(t^2+1)=\sqrt{1-x^2}$ つまり $(4a^2t^2+1)x^2-4a^2t(t^2+1)x+a^2(t^2+1)^2-1=0$ の 2 つの異なる実数解であるから,

$$\alpha + \beta = \frac{4a^2t(t^2+1)}{4a^2t^2+1}$$

$$\alpha\beta = \frac{a^2(t^2+1)^2-1}{4a^2t^2+1}$$

である。

よって,

$$L^{2} = (4a^{2}t^{2} + 1)\{(\alpha + \beta)^{2} - 4\alpha\beta\}$$
$$= 4 - \frac{4a^{2}(t^{2} + 1)^{2}}{4a^{2}t^{2} + 1}$$

である。

ここで,
$$f(t)=\frac{(t^2+1)^2}{4a^2t^2+1}$$
 とおくと, $f'(t)=\frac{4t(t^2+1)(2a^2t^2-2a^2+1)}{(4a^2t^2+1)^2}$ である。

$$(1)$$
 $1-2a^2 \ge 0$ つまり, $0 < a \le \frac{\sqrt{2}}{2}$ のとき

-1 < t < 0 では f'(t) < 0, 0 < t < 1 では f'(t) > 0 となり, f(t) は t = 0 のとき極小で最小となり, f(0) = 1 であるから, L は最大値 $2\sqrt{1-a^2}$ をとる。

$$(2) \ 1 - 2a^2 < 0$$
 つまり, $\frac{\sqrt{2}}{2} < a$ のとき

$$\sqrt{1-rac{1}{2a^2}}$$
 とおくと, $f'(t)=rac{4t(t^2+1) imes 2a^2(t+k)(t-k)}{(4a^2t^2+1)^2}$ となり,次の増減表が得られる。

t	-1		-k		0		k		1
f'(t)		_	0	+	0	_	0	+	
f(t)		K		7		×		7	

よって,f(t) は $t=\pm k$ のとき極小で最小となり,このとき $f(\pm k)=\frac{4a^2-1}{4a^2}$ であるから, L は最大値 $\frac{1}{a}$ をとる。

以上から,求める最大値は $0 < a \leq \frac{\sqrt{2}}{2}$ のとき $2\sqrt{1-a^2}$, $\frac{\sqrt{2}}{2} < a \leq 1$ のとき $\frac{1}{a}$ である。